Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0298930, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507436

RESUMO

The rumen represents a dynamic microbial ecosystem where fermentation metabolites and microbial concentrations change over time in response to dietary changes. The integration of microbial genomic knowledge and dynamic modelling can enhance our system-level understanding of rumen ecosystem's function. However, such an integration between dynamic models and rumen microbiota data is lacking. The objective of this work was to integrate rumen microbiota time series determined by 16S rRNA gene amplicon sequencing into a dynamic modelling framework to link microbial data to the dynamics of the volatile fatty acids (VFA) production during fermentation. For that, we used the theory of state observers to develop a model that estimates the dynamics of VFA from the data of microbial functional proxies associated with the specific production of each VFA. We determined the microbial proxies using CowPi to infer the functional potential of the rumen microbiota and extrapolate their functional modules from KEGG (Kyoto Encyclopedia of Genes and Genomes). The approach was challenged using data from an in vitro RUSITEC experiment and from an in vivo experiment with four cows. The model performance was evaluated by the coefficient of variation of the root mean square error (CRMSE). For the in vitro case study, the mean CVRMSE were 9.8% for acetate, 14% for butyrate and 14.5% for propionate. For the in vivo case study, the mean CVRMSE were 16.4% for acetate, 15.8% for butyrate and 19.8% for propionate. The mean CVRMSE for the VFA molar fractions were 3.1% for acetate, 3.8% for butyrate and 8.9% for propionate. Ours results show the promising application of state observers integrated with microbiota time series data for predicting rumen microbial metabolism.


Assuntos
Microbiota , Propionatos , Feminino , Animais , Bovinos , Propionatos/metabolismo , Fermentação , Rúmen/metabolismo , Fatores de Tempo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Dieta/veterinária , Ração Animal/análise
2.
J Anim Sci Biotechnol ; 14(1): 133, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907951

RESUMO

BACKGROUND: The red macroalgae Asparagopsis is an effective methanogenesis inhibitor due to the presence of halogenated methane (CH4) analogues, primarily bromoform (CHBr3). This study aimed to investigate the degradation process of CHBr3 from A. taxiformis in the rumen and whether this process is diet-dependent. An in vitro batch culture system was used according to a 2 × 2 factorial design, assessing two A. taxiformis inclusion rates [0 (CTL) and 2% DM diet (AT)] and two diets [high-concentrate (HC) and high-forage diet (HF)]. Incubations lasted for 72 h and samples of headspace and fermentation liquid were taken at 0, 0.5, 1, 3, 6, 8, 12, 16, 24, 48 and 72 h to assess the pattern of degradation of CHBr3 into dibromomethane (CH2Br2) and fermentation parameters. Additionally, an in vitro experiment with pure cultures of seven methanogens strains (Methanobrevibacter smithii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, Methanosarcina barkeri, Methanobrevibacter millerae, Methanothermobacter wolfei and Methanobacterium mobile) was conducted to test the effects of increasing concentrations of CHBr3 (0.4, 2, 10 and 50 µmol/L). RESULTS: The addition of AT significantly decreased CH4 production (P = 0.002) and the acetate:propionate ratio (P = 0.003) during a 72-h incubation. The concentrations of CHBr3 showed a rapid decrease with nearly 90% degraded within the first 3 h of incubation. On the contrary, CH2Br2 concentration quickly increased during the first 6 h and then gradually decreased towards the end of the incubation. Neither CHBr3 degradation nor CH2Br2 synthesis were affected by the type of diet used as substrate, suggesting that the fermentation rate is not a driving factor involved in CHBr3 degradation. The in vitro culture of methanogens showed a dose-response effect of CHBr3 by inhibiting the growth of M. smithii, M. ruminantium, M. stadtmanae, M. barkeri, M. millerae, M. wolfei, and M. mobile. CONCLUSIONS: The present work demonstrated that CHBr3 from A. taxiformis is quickly degraded to CH2Br2 in the rumen and that the fermentation rate promoted by different diets is not a driving factor involved in CHBr3 degradation.

3.
Animal ; 17(8): 100895, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515965

RESUMO

Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.


Assuntos
Cabras , Microbiota , Animais , Ovinos , Cabras/fisiologia , Dieta/veterinária , Rúmen/metabolismo , Multiômica , Ruminantes/microbiologia , Fermentação , Ração Animal/análise
4.
J Dairy Sci ; 106(7): 4634-4649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225586

RESUMO

Ruminants are born with an anatomically, microbiologically, and metabolically immature rumen. Optimizing the rearing of young ruminants represent an important challenge in intensive dairy farms. Therefore, the objective of this study was to evaluate the effects of dietary supplementation of young ruminants with a plant extract blend containing turmeric, thymol, and yeast cell wall components such as mannan oligosaccharides and ß-glucans. One hundred newborn female goat kids were randomly allocated to 2 experimental treatments, which were unsupplemented (CTL) or supplemented with the blend containing plant extracts and yeast cell wall components (PEY). All animas were fed with milk replacer, concentrate feed, and oat hay, and were weaned at 8 wk of age. Dietary treatments lasted from wk 1 to 22 and 10 animals from each treatment were randomly selected to monitor feed intake, digestibility, and health-related indicators. These latter animals were euthanized at wk 22 of age to study the rumen anatomical, papillary, and microbiological development, whereas the remaining animals were monitored for reproductive performance and milk yield during the first lactation. Results indicated that PEY supplementation did not lead to feed intake or health issues because PEY animals tended to have a higher concentrate intake and lower diarrheal incidence than CTL animals. No differences between treatments were noted in terms of feed digestibility, rumen microbial protein synthesis, health-related metabolites, or blood cell counts. Supplementation with PEY promoted a higher rumen empty weight, and rumen relative proportion to the total digestive tract weight, than CTL animals. This was accompanied with a higher rumen papillary development in terms of papillae length and surface area in the cranial ventral and caudal ventral sacs, respectively. The PEY animals also had higher expression of the MCT1 gene, which is related to volatile fatty acid absorption by the rumen epithelium, than CTL animals. The antimicrobial effects of the turmeric and thymol could explain the decreased the rumen absolute abundance of protozoa and anaerobic fungi. This antimicrobial modulation led to a change in the bacterial community structure, a decrease in the bacteria richness, and to the disappearance (i.e., Prevotellaceae_UCG-004, Bacteroidetes_BD2-2, Papillibacter, Schwartzia, and Absconditabacteriales_SR1) or decline of certain bacterial taxa (i.e., Prevotellaceae_NK3B31_group, and Clostridia_UCG-014). Supplementation with PEY also decreased the relative abundance of fibrolytic (i.e., Fibrobacter succinogenes and Eubacterium ruminantium) and increased amylolytic bacteria (Selenomonas ruminantium). Although these microbial changes were not accompanied with significant differences in the rumen fermentation, this supplementation led to increased body weight gain during the preweaning period, higher body weight during the postweaning period, and higher fertility rate during the first gestation. On the contrary, no residual effects of this nutritional intervention were noted on the milk yield and milk components during the first lactation. In conclusion, supplementation with this blend of plant extracts and yeast cell wall component in early life could be considered as a sustainable nutritional strategy to increase body weight gain and optimize the rumen anatomical and microbiological development in young ruminants, despite having minor productive implications later in life.


Assuntos
Saccharomyces cerevisiae , Timol , Feminino , Animais , Timol/farmacologia , Curcuma , Rúmen/metabolismo , Suplementos Nutricionais , Aumento de Peso , Parede Celular , Cabras/metabolismo
5.
Front Vet Sci ; 10: 1272835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179333

RESUMO

Introduction: This study explores if promoting a complex rumen microbiota represents an advantage or a handicap in the current dairy production systems in which ruminants are artificially reared in absence of contact with adult animals and fed preserved monophyte forage. Methods: In order to promote a different rumen microbial diversity, a total of 36 newborn goat kids were artificially reared, divided in 4 groups and daily inoculated during 10 weeks with autoclaved rumen fluid (AUT), fresh rumen fluid from adult goats adapted to forage (RFF) or concentrate (RFC) diets, or absence of inoculation (CTL). At 6 months of age all animals were shifted to an oats hay diet to determine their ability to digest a low quality forage. Results and discussion: Early life inoculation with fresh rumen fluid promoted an increase in the rumen overall microbial diversity which was detected later in life. As a result, at 6 months of age RFF and RFC animals had higher bacterial (+50 OTUs) and methanogens diversity (+4 OTUs) and the presence of a complex rumen protozoal community (+32 OTUs), whereas CTL animals remained protozoa-free. This superior rumen diversity and presence of rumen protozoa had beneficial effects on the energy metabolism allowing a faster adaptation to the forage diet, a higher forage digestion (+21% NDF digestibility) and an energetically favourable shift of the rumen fermentation pattern from acetate to butyrate (+92%) and propionate (+19%) production. These effects were associated with the presence of certain rumen bacterial taxa and a diverse protozoal community. On the contrary, the presence of rumen protozoa (mostly Entodinium) had a negative impact on the N metabolism leading to a higher bacterial protein breakdown in the rumen and lower microbial protein flow to the host based on purine derivatives urinary excretion (-17% to -54%). The inoculation with autoclaved rumen fluid, as source of fermentation products but not viable microbes, had smaller effects than using fresh inoculum. These findings suggest that enhancing rumen microbial diversity represents a desirable attribute when ruminants are fed forages in which the N supply does not represent a limiting factor for the rumen microbiota.

6.
Front Vet Sci ; 8: 706592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557542

RESUMO

Newborn dairy ruminants are usually separated from their dams after birth and fed on milk replacer. This lack of contact with adult animals may hinder the rumen microbiological and physiological development. This study evaluates the effects of rearing newborn goat kids in contact with adult companions on the rumen development. Thirty-two newborn goat kids were randomly allocated to two experimental groups which were reared either in the absence (CTL) or in the presence of non-lactating adult goats (CMP) and weaned at 7 weeks of age. Blood and rumen samples were taken at 5, 7, and 9 weeks of age to evaluate blood metabolites and rumen microbial fermentation. Next-generation sequencing was carried out on rumen samples collected at 7 weeks of age. Results showed that CTL kids lacked rumen protozoa, whereas CMP kids had an abundant and complex protozoal community as well as higher methanogen abundance which positively correlated with the body weight and blood ß-hydroxybutyrate as indicators of the physiological development. CMP kids also had a more diverse bacterial community (+132 ASVs) and a different structure of the bacterial and methanogen communities than CTL kids. The core rumen bacterial community in CMP animals had 53 more ASVs than that of CTL animals. Furthermore, the number of ASVs shared with the adult companions was over 4-fold higher in CMP kids than in CTL kids. Greater levels of early rumen colonizers Proteobacteria and Spirochaetes were found in CTL kids, while CMP kids had higher levels of Bacteroidetes and other less abundant taxa (Veillonellaceae, Cyanobacteria, and Selenomonas). These findings suggest that the presence of adult companions facilitated the rumen microbial development prior to weaning. This accelerated microbial development had no effect on the animal growth, but CMP animals presented higher rumen pH and butyrate (+45%) and ammonia concentrations than CTL kids, suggesting higher fibrolytic and proteolytic activities. CMP kids also had higher blood ß-hydroxybutyrate (+79%) and lower blood glucose concentrations (-23%) at weaning, indicating an earlier metabolic development which could favor the transition from pre-ruminant to ruminant after the weaning process. Further research is needed to determine the effects of this intervention in more challenging farm conditions.

7.
Anim Microbiome ; 3(1): 28, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853683

RESUMO

BACKGROUND: The knowledge about blood circulating microbiome and its functional relevance in healthy individuals remains limited. An assessment of changes in the circulating microbiome was performed by sequencing peripheral blood mononuclear cells (PBMC) bacterial DNA from goats supplemented or not in early life with rumen liquid transplantation. RESULTS: Most of the bacterial DNA associated to PBMC was identified predominantly as Proteobacteria (55%) followed by Firmicutes (24%), Bacteroidetes (11%) and Actinobacteria (8%). The predominant genera found in PBMC samples were Pseudomonas, Prevotella, Sphingomonas, Acinetobacter, Corynebacterium and Ruminococcus. Other genera such as Butyrivibrivio, Bifidobacterium, Dorea and Coprococcus were also present in lower proportions. Several species known as blood pathogens or others involved in gut homeostasis such as Faecalibacterium prausnitzii were also identified. However, the PBMC microbiome phylum composition differed from that in the colon of goats (P ≤ 0.001), where Firmicutes was the predominant phylum (83%). Although, rumen liquid administration in early-life altered bacterial community structure and increased Tlr5 expression (P = 0.020) in colon pointing to higher bacterial translocation, less than 8% of OTUs in colon were also observed in PBMCs. CONCLUSIONS: Data suggest that in physiological conditions, PBMC microbiome differs from and is not affected by colon gut microbiota in small ruminants. Although, further studies with larger number of animals and covering other animal tissues are required, results point to a common circulating bacterial profile on mammals being phylum Proteobacteria, and genera Pseudomonas and Prevotella the most abundants. All suggest that PBMC microbiome in healthy ruminants could be implicated in homeostatic condition. This study expands our knowledge about PBMC microbiome contribution to health in farm animals.

8.
J Sci Food Agric ; 101(13): 5541-5549, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33709464

RESUMO

BACKGROUND: Meeting the energy and nitrogen (N) requirements of high-performing ruminants at the same time as avoiding digestive disturbances (i.e. rumen acidosis) is a key priority in ruminant nutrition. The present study evaluated the effect of a cereal ammoniation treatment, in which barley grains are combined with urea and enzymes that catalyze the conversion of urea to ammonia to optimize rumen function. Twelve rumen cannulated sheep were randomly divided into two groups and fed a diet containing 60% of ammoniated barley (AMM) or untreated barley supplemented with urea (CTL) to investigate the impact on rumen fermentation and feed utilization. RESULTS: AMM had higher total N content and effective rumen degradable N than untreated barely. AMM sheep had a consistently higher rumen pH throughout the day (6.31 versus 6.03) and tended to have a lower post-prandial ammonia peak and higher acetate molar proportion (+5.1%) than CTL sheep. The rumen environment in AMM sheep favored the colonization and utilization of agro-industrial by-products (i.e. orange pulp) by the rumen microbes leading to a higher feed degradability. AMM sheep also had higher total tract apparent N digestibility (+21.7%) and urinary excretion of purine derivatives (+34%), suggesting a higher N uptake and microbial protein synthesis than CTL sheep. CONCLUSION: The inclusion of AMM in the diet of ruminants represents a valid strategy for maintaining rumen pH within a physiological range and improving N utilization by the rumen microbes, which could have positive effects on the health and productivity of animals in intensive production systems. These findings warrant further studies under conventional farm conditions. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Amônia/química , Ração Animal/análise , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Manipulação de Alimentos/métodos , Hordeum/química , Rúmen/metabolismo , Ovinos/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Dieta/veterinária , Digestão , Microbioma Gastrointestinal , Hordeum/metabolismo , Concentração de Íons de Hidrogênio , Rúmen/química , Rúmen/microbiologia , Ureia/química
9.
Anim Microbiome ; 3(1): 11, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33499992

RESUMO

BACKGROUND: Newborn ruminants possess an underdeveloped rumen which is colonized by microorganisms acquired from adult animals and the surrounding environment. This microbial transfer can be limited in dairy systems in which newborns are separated from their dams at birth. This study explores whether the direct inoculation of fresh or autoclaved rumen fluid from adult goats to newborn kids has a beneficial effect on rumen microbial development and function. RESULTS: Repetitive inoculation of young kids with fresh rumen fluid from adult goats adapted to forage (RFF) or concentrate diets (RFC) accelerated microbial colonization of the rumen during the pre-weaning period leading to high protozoal numbers, a greater diversity of bacterial (+ 234 OTUs), methanogens (+ 6 OTUs) and protozoal communities (+ 25 OTUs) than observed in control kids (CTL) without inoculation. This inoculation also increased the size of the core bacterial and methanogens community and the abundance of key rumen bacteria (Ruminococcaceae, Fibrobacteres, Veillonellaceae, Rikenellaceae, Tenericutes), methanogens (Methanobrevibacter ruminantium, Methanomicrobium mobile and Group 9), anaerobic fungi (Piromyces and Orpinomyces) and protozoal taxa (Enoploplastron, Diplodinium, Polyplastron, Ophryoscolex, Isotricha and Dasytricha) before weaning whereas CTL kids remained protozoa-free through the study. Most of these taxa were positively correlated with indicators of the rumen microbiological and physiological development (higher forage and concentrate intakes and animal growth during the post-weaning period) favoring the weaning process in RFF and RFC kids in comparison to CTL kids. Some of these microbiological differences tended to decrease during the post-weaning period, although RFF and RFC kids retained a more complex and matured rumen microbial ecosystem than CTL kids. Inoculation with autoclaved rumen fluid promoted lower development of the bacterial and protozoal communities during the pre-weaning period than using fresh inocula, but it favored a more rapid microbial development during the post-weaning than observed for CTL kids. CONCLUSIONS: This study demonstrated that inoculation of young ruminants with fresh rumen fluid from adult animals accelerated the rumen microbial colonization which was associated with an earlier rumen functional development. This strategy facilitated a smoother transition from milk to solid feed favoring the animal performance during post-weaning and minimizing stress.

10.
Food Energy Secur ; 9(3): e209, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999716

RESUMO

Ruminant agriculture suffers from inefficient capture of forage protein and consequential release of N pollutants to land. This is due to proteolysis in the rumen catalyzed by both microbial but initially endogenous plant proteases. Plant breeding-based solutions are sought to minimize these negative environmental impacts. The aim of this study was to perform an integrated study of rumen N metabolism using semi-continuous rumen simulation fermenters (Rusitec) to explore the extent to which swards containing Festulolium populations (interspecific hybrids between Lolium and Festuca grass species) with decreased rates of endogenous protein degradation conferred advantageous protein utilization in comparison with a National Listed perennial ryegrass. An in vitro experiment was conducted using three Festulolium hybrids (Lolium perenne × Festuca arundinacea var. glaucescens, LpFg; Lolium perenne × Festuca mairei, LpFm; and Lolium multiflorum × Festuca arundinacea var. glaucescens, LmFg) and a Lolium perenne, Lp control. LpFm and LmFg demonstrated significantly lower plant-mediated proteolysis than the control. Fresh forage was incubated in Rusitec with rumen fluid from four donor cows. Feed disappearance and production of gas, methane, and volatile fatty acids were similar across cultivars. Whereas no differences in microbial protein synthesis were noted across treatments during early fermentation (0-6 hr after feeding), an increased microbial N flow in LpFm (+30%) and LmFg hybrids (+41%) was observed during late fermentation (6-24 hr after feeding), with higher overall microbial N flows (+13.5% and + 20.2%, respectively) compared with the control (Lp). We propose an underpinning mechanism involving the partitioning of amino acid catabolism toward branched-chain amino acids and microbial protein synthesis in grasses with slow plant-mediated proteolysis instead of accumulation of rumen ammonia in grasses with fast plant-mediated proteolysis. These observations indicate the potential of Festulolium hybrids with a slow plant-mediated proteolysis trait to improve the efficiency of capture of forage protein and decrease the release of N pollutants onto the land.

11.
Animals (Basel) ; 10(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260263

RESUMO

There is an increasing pressure to identify feed additives which increase productivity or decrease methane emissions. This paper aims to elucidate the effects of supplementing a specific essential oils blend Agolin® Ruminant on the productivity of dairy cows in comparison to non-treated animals. A total of 23 in vivo studies were identified in which Agolin was supplemented at 1 g/d per cow; then a meta-analysis was performed to determine the response ratio on milk yield, rumen fermentation, methane emissions and health. Results indicated that an adaptation period of at least 4 weeks of treatment is required. Whereas short-term studies showed minor and inconsistent effects of Agolin, long-term studies (>4 weeks of treatment) revealed that Agolin supplementation increases milk yield (+3.6%), fat and protein corrected milk (+4.1%) and feed efficiency (+4.4%) without further changes in milk composition and feed intake. Long-term treatment also decreased methane production per day (-8.8%), per dry matter intake (-12.9%) and per fat and protein corrected milk yield (-9.9%) without changes in rumen fermentation pattern. In conclusion, despite the mode of action is still unclear and the small number of studies considered, these findings show that Agolin represents an encouraging alternative to improve productivity in dairy cows.

13.
Environ Microbiol ; 21(11): 4360-4377, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31518039

RESUMO

Increasing productivity is a key target in ruminant science which requires better understanding of the rumen microbiota. This study investigated how maternal versus artificial rearing shapes the rumen microbiota using 24 sets of triplet lambs. Lambs within each sibling set were randomly assigned to natural rearing on the ewe (NN); ewe colostrum for 24 h followed by artificial milk feeding (NA); and colostrum alternative and artificial milk feeding (AA). Maternal colostrum feeding enhanced VFA production at weaning but not thereafter. At weaning, lambs reared on milk replacer had no rumen protozoa and lower microbial diversity, whereas natural rearing accelerated the rumen microbial development and facilitated the transition to solid diet. Differences in the rumen prokaryotic communities disappear later in life when all lambs were grouped on the same pasture up to 23 weeks of age. However, NN animals retained higher fungal diversity and abundances of Piromyces, Feramyces and Diplodiniinae protozoa as well as higher feed digestibility (+4%) and animal growth (+6.5%) during the grazing period. Nevertheless, no correlations were found between rumen microbiota and productive outcomes. These findings suggest that the early life nutritional intervention determine the initial rumen microbial community, but the persistence of these effects later in life is weak.


Assuntos
Microbiota , Leite , Rúmen/microbiologia , Ovinos/microbiologia , Animais , Dieta/veterinária , Feminino , Masculino , Desmame
14.
Front Microbiol ; 10: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853943

RESUMO

Increasing feed efficiency is a key target in ruminant science which requires a better understanding of rumen microbiota. This study investigated the effect of a shift from a non-grazing to a grazing diet on the rumen bacterial, methanogenic archaea, fungal, and protozoal communities. A systems biology approach based on a description of the community structure, core microbiota, network analysis, and taxon abundance linked to the rumen fermentation was used to explore the benefits of increasing depth of the community analysis. A total of 24 sheep were fed ryegrass hay supplemented with concentrate (CON) and subsequently ryegrass pasture (PAS) following a straight through experimental design. Results showed that concentrate supplementation in CON-fed animals (mainly starch) promoted a simplified rumen microbiota in terms of network density and bacterial, methanogen and fungal species richness which favored the proliferation of amylolytic microbes and VFA production (+48%), but led to a lower (ca. 4-fold) ammonia concentration making the N availability a limiting factor certain microbes. The adaptation process from the CON to the PAS diet consisted on an increase in the microbial concentration (biomass of bacteria, methanogens, and protozoa), diversity (+221, +3, and +21 OTUs for bacteria, methanogens, and fungi, respectively), microbial network complexity (+18 nodes and +86 edges) and in the abundance of key microbes involved in cellulolysis (Ruminococcus, Butyrivibrio, and Orpinomyces), proteolysis (Prevotella and Entodiniinae), lactate production (Streptococcus and Selenomonas), as well as methylotrophic archaea (Methanomassiliicoccaceae). This microbial adaptation indicated that pasture degradation is a complex process which requires a diverse consortium of microbes working together. The correlations between the abundance of microbial taxa and rumen fermentation parameters were not consistent across diets suggesting a metabolic plasticity which allowed microbes to adapt to different substrates and to shift their fermentation products. The core microbiota was composed of 34, 9, and 13 genera for bacteria, methanogens, and fungi, respectively, which were shared by all sheep, independent of diet. This systems biology approach adds a new dimension to our understanding of the rumen microbial interactions and may provide new clues to describe the mode of action of future nutritional interventions.

15.
J Sci Food Agric ; 99(1): 163-172, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29851076

RESUMO

BACKGROUND: The rumen microbiota has been used as inoculum for in vitro studies and as a probiotic to improve productivity in young animals. However, great variability across studies has been noted depending on the inoculum considered. The present study aims to assess the relevance of different factors (microbial fraction, collection time, donor animal diet, fermentation substrate and inoculum preservation method) to maximize the rumen inoculum activity and set the standards for further in vitro and in vivo applications. RESULTS: Rumen inoculum sampled at 3 h after feeding led to greater microbial growth and activity [+12% volatile fatty acid (VFA), +17% ammonia] compared to before feeding. Similar results were noted when rumen liquid or rumen content were used as inocula. Rumen inoculum adapted to concentrate diets increased microbial activity (+19% VFA) independently of the substrate used in vitro. Freezing-thawing the inoculum, in comparison to fresh inoculum, decreased microbial activity (-14% VFA, -96% ammonia), anaerobic fungi and protozoa, with holotrichs protozoa being particularly vulnerable. Inoculum lyophilization had a stronger negative effect on microbial activity (-51% VFA) and delayed re-activation of the microbes, leading to lower levels of methanogens and anaerobic fungi, as well as almost complete wipe out of rumen protozoa. CONCLUSIONS: Fresh rumen fluid sampled at 3 h after feeding from donor animals that were fed concentrate diets should be chosen when the aim is to provide the most diverse and active rumen microbial inoculum. © 2018 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Rúmen/microbiologia , Inoculantes Agrícolas/genética , Inoculantes Agrícolas/isolamento & purificação , Inoculantes Agrícolas/metabolismo , Amônia/análise , Amônia/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bovinos , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Rúmen/metabolismo
16.
Front Microbiol ; 9: 2161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319557

RESUMO

The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.

17.
Front Microbiol ; 8: 1456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824585

RESUMO

Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0-2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4-8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes.

18.
Front Microbiol ; 7: 905, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375609

RESUMO

Rumen function is generally suboptimal leading to losses in methane and nitrogen. Analysis of the rumen microbiome is thus important to understanding the underlying microbial activity under different feeding strategies. This study investigated the effect of forage conservation method and vitamin E supplementation on rumen function using a rumen simulation technique. Ryegrass (GRA) or ryegrass hay (HAY) was supplemented with 20% concentrate containing zero or 50 IU/d vitamin E, as α-tocopheryl acetate, according to a 2 × 2 factorial design. The forage conservation method did not substantially change the nutrient composition but had a profound impact on the structure and diversity of the rumen microbiome. HAY diets promoted a more complex bacterial community (+38 OTUs) dominated by Firmicutes. This bacterial adaptation, together with increased rumen protozoa levels and methanogen diversity, was associated with greater fiber disappearance (+12%) in HAY diets, but also with greater rumen true N degradability (+7%) than GRA diets. HAY diets also had a higher metabolic H recovery and methane production (+35%) suggesting more efficient inter-species H transfer between bacteria, protozoa and methanogens. Contrarily, GRA diets promoted more simplified methanogen and bacterial communities, which were dominated by Bacteroidetes and Lactobacillus, thus lactate formation may have acted as an alternative H sink in GRA diets. Moreover the structure of the bacterial community with GRA diets was highly correlated with N utilization, and GRA diets promoted greater bacterial growth and microbial protein synthesis (+16%), as well as a more efficient microbial protein synthesis (+22%). A dose-response experiment using batch cultures revealed that vitamin E supplementation increased rumen fermentation in terms of total VFA and gas production, with protozoal activity higher when supplying α-tocopheryl acetate vs. α-tocopherol. Moreover, α-tocopheryl acetate promoted a small increase in feed degradability (+8%), possibly as a result of its antioxidant properties which led to higher bacterial and protozoal levels. Vitamin E supplementation also modified the levels of some methanogen species indicating that they may be particularly sensitive to oxidative stresses. Our findings suggested that when possible, grass should be fed instead of grass hay, in order to improve rumen function and to decrease the environmental impact of livestock agriculture.

19.
Front Microbiol ; 7: 299, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014222

RESUMO

There is an increasing need to identify alternative feeds for livestock that do not compete with foods for humans. Seaweed might provide such a resource, but there is limited information available on its value as an animal feed. Here we use a multi-omics approach to investigate the value of two brown seaweeds, Ascophyllum nodosum (ASC) and Laminaria digitata (LAM), as alternative feeds for ruminants. These seaweeds were supplemented at 5% inclusion rate into a control diet (CON) in a rumen simulation fermenter. The seaweeds had no substantial effect on rumen fermentation, feed degradability or methane emissions. Concentrations of total bacteria, anaerobic fungi, biodiversity indices and abundances of the main bacterial and methanogen genera were also unaffected. However, species-specific effects of brown seaweed on the rumen function were noted: ASC promoted a substantial decrease in N degradability (-24%) due to its high phlorotannins content. Canonical correspondence analysis of the bacterial community revealed that low N availability led to a change in the structure of the bacterial community. ASC also decreased the concentration of Escherichia coli O157:H7 post-inoculation. In contrast, LAM which has a much lower phlorotannin content did not cause detrimental effects on N degradability nor modified the structure of the bacterial community in comparison to CON. This adaptation of the microbial community to LAM diets led to a greater microbial ability to digest xylan (+70%) and carboxy-methyl-cellulose (+41%). These differences among brown seaweeds resulted in greater microbial protein synthesis (+15%) and non-ammonia N flow (+11%) in LAM than in ASC diets and thus should led to a greater amino acid supply to the intestine of the animal. In conclusion, it was demonstrated that incorporation of brown seaweed into the diet can be considered as a suitable nutritional strategy for ruminants; however, special care must be taken with those seaweeds with high phlorotannin concentrations to prevent detrimental effects on N metabolism. This study highlights the value of combining fermentation and enzyme activity data with molecular characterization of the rumen microbiome in evaluating novel feeds for ruminants. Further experiments are required to determine the maximum seaweed inclusion rate tolerated by rumen microbes.

20.
J Sci Food Agric ; 96(9): 3069-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26441121

RESUMO

BACKGROUND: Eight natural products from animal, unicellular algae, brown seaweed and plant origins were chosen according to their theoretical antimicrobial activity: Diatomaceous earths (DE), insoluble chitosan (ICHI), soluble chitosan (CHI), seaweed meal (SWM), Ascophyllum nodosum (ASC), Laminaria digitata (LAM), neem oil (NOIL) and an ivy fruit extract rich in saponins (IVY). Dose-response incubations were conducted to determine their effect on rumen fermentation pattern and gas production, while their anti-protozoal activity was tested using (14) C-labelled bacteria. RESULTS: DE, SWM, NOIL and ICHI had very small effects on rumen function when used at inclusion rate up to 2 g L(-1) . ASC had anti-protozoal effects (up to -23%) promoting a decrease in gas production and methanogenesis (-15%). LAM increased VFA production (+7%) and shifted from butyrate to acetate. CHI also shifted fermentation towards propionate production and lower methane (-23%) and protozoal activity (-56%). IVY decreased protozoal activity (-39%) and ammonia concentration (-56%), as well as increased feed fermentation (+11% VFA concentration) and shifted from acetate to propionate production. CONCLUSIONS: ASC, LAM, CHI and IVY showed promising potential in vitro as feed additives to improve rumen function, thus more research is needed to investigate their mode of action in the rumen microbial ecosystem. © 2015 Society of Chemical Industry.


Assuntos
Ração Animal , Antiprotozoários/isolamento & purificação , Organismos Aquáticos/química , Produtos Biológicos/química , Modelos Biológicos , Extratos Vegetais/química , Rúmen/metabolismo , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/isolamento & purificação , Antiprotozoários/análise , Ascophyllum/química , Bovinos , Quitosana/química , Indústria de Laticínios , Terra de Diatomáceas/química , Feminino , Fermentação , Frutas/química , Glicerídeos/química , Hedera/química , Laminaria/química , Microalgas/química , Rúmen/química , Rúmen/microbiologia , Rúmen/parasitologia , Alga Marinha/química , Solubilidade , Terpenos/química , País de Gales
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...